homeaboutessential guidepicture of the daythunderblogsnewsmultimediapredictionsproductsget involvedcontact



pic of the day
  subject index
  abstract archive



Electric Cosmos

The Universe

Plasma Cosmology

Society for



Jul 22, 2004
Rampart Craters

Rampart craters and pedestal craters  on Mars  are difficult to explain with the impact model.

Pedestal craters, including their bottoms, stand above the elevation of the surrounding terrain. Rampart craters, like the one shown in the above THEMIS image, are surrounded by a "moat" (red arrow) that's deeper than the original ground level and an outer "rampart" (blue arrow) that's higher than both the moat and the surrounding terrain. The outer rampart seems to have "flowed" away from the crater, rather than to have been ejected.

From an Electric Universe point of view, these craters are enormous fulgamites, raised blisters like those found on the metal caps of lightning arrestors after a lightning strike. Because the whole blister is lifted above the surface by the lightning arc, the crater at the top is not necessarily deeper than the elevation of the original surface around it. The material forming the raised fulgamite is scavenged from the surroundings, leaving a "moat" below the surface level.

The radial flow features have been produced in the laboratory when an arc strikes a moist clay surface. The arc appears to draw water to the surface and then to drive it away from the crater, generating a distinctive flow pattern. Thus, the rampart craters, combined with laboratory experiments, add to the evidence that Mars had water in the past.

Enormous Fulgamite


David Talbott, Wallace Thornhill
Amy Acheson
  CONTRIBUTING EDITORS: Mel Acheson, Michael Armstrong, Dwardu Cardona,
Ev Cochrane,   Walter Radtke, C.J. Ransom, Don Scott, Rens van der Sluijs, Ian Tresman
  WEBMASTER: Michael Armstrong

Copyright 2004: