by StefanR » Tue Mar 18, 2008 4:44 am
plnbz
Posted: Fri Mar 07, 2008 1:25 am Post subject: Reply with quote
And the remainder. Uncertain parts are in bold ...
---
The Field-Theoretical Approach
The duality between the E- and H-fields and their commutability demands a corresponding dual formulation to the Faraday-law (1). Written down according to the rules of duality, there results an equation (2), which occasionally is mentioned in some textbooks.
While both equations in the books of Pohl [6, pp. 76 and 130] and of Simonyi [10, p. 924] are written down side-by-side as having equal rights and are compared with each other, Grimsehl [11, S. 130] derives the dual regularity (2) with the help of the example of a thin, positively charged and rotating metal ring. He speaks of the “equation of convection”, according to which moving charges produce a magnetic field and so-called convection currents. In doing so, he refers to workings of Röntgen 1885, Himstedt, Rowland 1876, Eichenwald and many others, which today hardly are known.
In his textbook also Pohl gives practical examples for both equations of transformation.
He points out that one equation changes into the other one, if as a relative velocity v the speed of light c should occur. This question will also occupy us.
We now have found a field-theoretical approach for the equations of transformation, which in its dual formulation is clearly distinguished from the Maxwell approach. The reassuring conclusion is added: This new field approach roots entirely in textbook physics, as are the results from the literature research. We can completely do without postulates.
The next thing to do is to strictly mathematically test the approach for contradictions. In particular, we are concerned with the question: which known regularities can be derived under which conditions? Moreover, the conditions and the scope of the derived theories should logically follow, e.g. of what the Maxwell approximation consists of, and why the Maxwell equations describe only a special case.
Derivation of Maxwell’s Field Equations
[see original paper for mathematical derivation]
From the comparison with the law of induction (1*), we merely infer that according to Maxwell’s Theory this term [ b = -v div B (=0?) ] is assumed to be zero. But that is exactly the Maxwell approximation and contrasts with the new and dual field approach, which roots in Faraday.
In this way, the duality is lost with the argument that magnetic monopoles (div B) -- in contrast to electric monopoles (div D) -- do not exist, and indeed, to this day they continue to evade every proof. It thus is overlooked that div D at first describes only eddy currents and div B the necessary anti-vortex, the potential vortex. Spherical particles, like for example charge carriers, presuppose both vortices: on the inside the expanding (div D) and on the outside the contracting vortex (div B). Even if the eddy current’s opposing vortex expressed in the neglected term has yet to be searched for, this contracting vortex cannot be assumed to be zero.
When you realize that assuming a monopole requires a special form of a field vortex, then it’s immediately clear as to why the search for magnetic poles has to be a dead end. The mathematical absence of electrical conductivity in formulas describing vacuums prevents current densities, eddy currents and the formation of magnetic monopoles. Potential densities and potential vortices however can occur. As a result, without exception, only electrically charged particles can be found in the vacuum (derivation [1] in chapter 4.2 till 4.4).
Because vortices are more than monopole-like structures depending on some boundary conditions, only the vortex description will be pursued from here on.
Let us record: Maxwell’s field equations can be directly derived from the new dual field approach under a restrictive condition. Under this condition, the two approaches are equivalent, and with that also error free. Both follow the textbooks, and can so to speak be the textbook opinion.
The restriction (b = 0) surely is meaningful and reasonable in all those cases in which the Maxwell theory is successful. It only has an effect in the domain of electrodynamics. Here usually a vector potential A is introduced and by means of the calculation of a complex dielectric constant a loss angle is determined. Mathematically, the approach is correct and the dielectric losses can be calculated. Physically however, the result is extremely questionable, since as a consequence of a complex ε a complex speed of light would result (according to the definition c ≡ 1/√ε⋅μ). With that, electrodynamics contradicts all specifications of the textbooks, according to which c is constant, non-variable and certainly never complex.
But if the result of the derivation is physically wrong, then something with the approach is wrong too. Is it possible that the fields in the dielectric perhaps have an entirely different nature, and that dielectric losses perhaps are vortex losses of potential vortices falling apart?
Derivation of the Potential Vortices
Is the introduction of a vector potential A in electrodynamics a substitute for neglecting the potential density b? Do these two approaches mathematically lead to the same result? And what about the physical relevance? Since classic electrodynamics is dependent upon working with a complex constant of material, within which is buried an insurmountable inner contradiction, the question is asked if the new approach is free of contradictions.
At this point a decision must be made, if physics is to favor the more efficient approach, as it always has done when a change of paradigm had to be dealt with.
[See paper for formulas]
This representation of the law of Ampere (eq. 13) clearly brings to light why the magnetic field is a vortex field, and how the eddy currents produce heat losses depending on the specific electric conductivity σ. As one sees, with regards to the magnetic field description, we move around completely within the framework of textbook physics.
[See paper for formulas]
In contrast to that, the Maxwell theory requires an irrotationality of the electric field, which is expressed by taking the potential density b and the divergence B equal to zero. The time constant τ2 thereby tends towards infinity. This Maxwell approximation obscures the fact that potential vortices of the electric field propagate as scalar waves, and that the Maxwell equations describe only transverse and not longitudinal waves. Demonstrating the point, there can occur contradictions for instance in the case of the near-field of an antenna, where longitudinal wave parts can technically be measured. Such technologies are already used in transponder systems, e.g. as installations warning of theft in big stores.
Notice how in the textbooks of high-frequency technology in the case of the near-field zone how the problem is dealt with [12, S.335]. Because of the absence of a potential vortex within Maxwell’s equations, the missing potential vortex is postulated without further ado, by means of the specification of a “standing wave” in the form of a vortex at a dipole antenna. With the help of this postulate, the longitudinal wave components are “calculated”. It’s as if they are being measured, but also as if they wouldn’t occur without the postulate as a result of the Maxwell approximation.
There isn’t a way past the potential vortices and the new dual approach because no scientist can afford to exclude in their approach a possibly authoritative phenomenon, which he already calculates to be physically correct!
In addition, further equations can be derived (from eq. 13 + 16), derivations which until now were supposed to be impossible, e.g. the Schrödinger equation ([1] chap. 5.6-5.9). As a consequence of Maxwell’s Equations in general, and specifically the eddy currents not being able to form structures on their own, every attempt to derive the Schrödinger equation from the Maxwell equations will necessarily fail.
The new field equation (16) however contains the newly discovered potential vortices, which owing to their constricting effect (in duality to the skin effect) form spherical structures, for which reason these occur as eigenvalues of the equation. Numerous practical measurements are possible for these eigenvalue solutions which will confirm their correctness and demonstrate the correctness of the new field approach and the extended field equation.
The Maxwell field as a derived special case
As the derivations show, nobody can claim that potential vortices don’t exist, or refuse that they propagate as scalar waves, because they’ve in fact been factored out of the approach within Maxwell’s Equations. One must accept that the field equations, as famous as they are, are nothing but a special case which can be derived.
The field-theoretical approach however, which among others is based upon the Faraday-law, is universal and can’t be derived any further. It describes a physical basic principle, the alternating of two dual experience or observation factors, their overlapping and mixing by continually mixing up cause and effect. It is a philosophic approach, free of materialistic or quantum physical concepts of any particles.
Maxwell on the other hand describes without exception the fields of charged particles, the electric field as describing particles at rest, and the magnetic field as a result of moving charges. The charge carriers are postulated for this purpose, so that their origin and their inner structure remain unsettled and can’t be derived. The subdivision, e.g. in quarks, remains a hypothesis which can’t be proven. The sorting and systematizing of the properties of particles in the standard model yields us nothing more than an unsatisfying comfort due to the lack of calculability.
With the field-theoretical approach however, the elementary particles with all quantum properties can be calculated as field vortices [1, chap. 7]. With that the field is the cause for the particles and their measurable quantization. The electric vortex field, at first source free, is itself forming its field sources in form of potential vortex structures. The formation of charge carriers in this way can be explained and proven mathematically, physically, graphically and experimentally. It is understandable according to the model.
Where the approach to date has been the Maxwell theory, the future should proceed from the equations of transformation of the field-theoretical approach. If now potential vortex phenomena occur, then these also should be interpreted as such in the sense of the approach and the derivation. And the introduction and postulation of decoupled model descriptions should no longer be allowed for phenomena like the near-field effects of an antenna, noise, dielectric capacitor losses, the mode of light and many more.
The typical scam in in theoretical physics of first designating a phenomenon as zero only to afterwards postulate it anew with the help of a more or less suitable model leads to a breaking up of physics into seemingly disconnected individual disciplines, and an inefficient specialist hood. There must be an end to this now! The new approach shows the way towards a unified theory in which the different disciplines of physics again fuse into one single discipline. This is the primary advantage of this approach, even if many of the specialists at first should still revolt against it.
This new and unified view of physics shall be summarized with the term “theory of objectivity”. As we shall derive, it will be possible to deduce the theory of relativity as a partial aspect of it [1, chapter 6 and 28].
Let us first consider wave propagation.
Derivation of the Wave Equation
[See paper for derivations]
There are some questions we should ask:
• Can this mathematical wave description also be derived from the new approach?
• Is it only a special case, and how do the boundary conditions read?
• In this case, how should it be interpreted physically?
• Are new properties present, which can lead to new technologies?
[See paper for derivations]
From the simplified field equation (24), the general wave equation (26) can be derived as demonstrated, and is divided into longitudinal and transverse wave parts, which however can propagate with different velocities.
[See paper for formula]
Physically, these vortices have a particle nature as a consequence of their structure-forming property. With that they carry momentum, which puts them in a position to form a longitudinal shock wave similar to a sound wave. If the propagation of the light at one time appears as a wave and another time as a particle, then this simply and solely is a consequence of the wave equation. Light quanta should be interpreted as evidence for the existence of scalar waves. Here however also occurs the restriction that light always propagates with the speed of light. It concerns the special case v = c.
With that, the derived wave equation (26) changes into the inhomogeneous Laplace equation (21).
[See paper for formula]
The electromagnetic wave in both cases is propagating with c. As a transverse wave, the field vectors are standing perpendicular to the direction of propagation. The velocity of propagation therefore is decoupled and constant. Completely different is the case for the longitudinal wave. Here, the propagation takes place in the direction of an oscillating field pointer, so that the phase velocity is permanently changing and nothing more than an average group velocity can be given for the propagation. There exists no restriction for v, and v = c only describes a special case.
[See paper for table]
The New Field Approach in Synopsis
Proof could be furnished that an approximation is buried in Maxwell’s field equations and that they merely represent the special case of a new, dually-formulated and more universal approach. The mathematical derivations of the Maxwell field and the wave equation reveal the nature of the Maxwell approximation. The anti-vortex dual to the expanding eddy current with its skin effect is neglected. This contracting anti-vortex is called potential vortex. It is capable of forming structures and propagates as a scalar wave in a longitudinal manner in poorly conductive media like air or vacuum.
At relativistic velocities the potential vortices are subject to the Lorentz contraction. Since for scalar waves the propagation occurs longitudinally in the direction of an oscillating field pointer, the potential vortices experience a constant oscillation of size as a result of the oscillating propagation. If one imagines the field vortex as a planar but rolled up transverse wave, then from the oscillation of size and with that of wavelength at constant swirl velocity with c follows a continual change in frequency, which is measured as a noise signal.
The noise proves to be the neglected potential vortex term in Maxwell’s Equations, and it creates scalar waves. If in biological or technological systems, e.g. with antennas, a noise signal is being measured, then that demonstrates the existence of potential vortices. But it then also means that the scope of Maxwell’s theory has been exceeded and erroneous concepts can be the result.
As an answer to the question of possible new technologies are two special properties.
First: Potential vortices for reason of their particle nature carry momentum and energy. Since we are surrounded by noise vortices, energy applications for scalar waves, where this noise power is withdrawn of the surroundings, would be feasible. There is evidence that biological systems in nature resolve their need for energy in this way. At a minimum, energy transmission via scalar waves would represent a significant advancement compared with the alternating current technology of today.
Second: The wavelength multiplied with the frequency results in the velocity of propagation v of a wave (λ⋅f = v), and that for scalar waves by no means is constant. With that, wavelength and frequency aren’t coupled anymore; they can be modulated separately, for which reason scalar waves a whole dimension can be modulated as compared to the Hertzian wave. In that, the reason can be seen why the human brain with just 10 Hz clock frequency is considerably more efficient than modern computers with more than 1 GHz clock frequency. Nature always works with the best technology, even if we haven’t yet understood it.
If we would try to learn of nature, energy technologies and information technologies that make use of scalar waves would result. If such technologies were created, then it’s unlikely that people would still praise our current technologies anymore. The issues of greenhouse gases and smog give us no other choice than to scientifically occupy ourselves with scalar waves and their technological applications.
Last edited by
StefanR on Tue Mar 18, 2008 4:55 am, edited 1 time in total.