Wired magazine's focus on Big Data

Has science taken a wrong turn? If so, what corrections are needed? Chronicles of scientific misbehavior. The role of heretic-pioneers and forbidden questions in the sciences. Is peer review working? The perverse "consensus of leading scientists." Good public relations versus good science.

Moderators: MGmirkin, bboyer

Locked
kmerrell
Posts: 14
Joined: Tue Jun 24, 2008 6:12 am

Wired magazine's focus on Big Data

Unread post by kmerrell » Tue Jun 24, 2008 6:33 am

The cover story in the current Wired magazine explores the impact of Big Data. Chris Anderson's opening essay suggests that our growing ability to collect and analyze vast data sets will fundamentally change how we look at the world. "The End of Theory: The Data Deluge Makes the Scientific Method Obsolete" By Chris Anderson: http://www.wired.com/science/discoverie ... /pb_theory

It's refreshing to hear folks outside the EU sphere come to similar conclusions about models, theories and the 'scientific method'! From Anderson's essay:

"Scientists are trained to recognize that correlation is not causation, that no conclusions should be drawn simply on the basis of correlation between X and Y (it could just be a coincidence). Instead, you must understand the underlying mechanisms that connect the two. Once you have a model, you can connect the data sets with confidence. Data without a model is just noise.

But faced with massive data, this approach to science — hypothesize, model, test — is becoming obsolete. Consider physics: Newtonian models were crude approximations of the truth (wrong at the atomic level, but still useful). A hundred years ago, statistically based quantum mechanics offered a better picture — but quantum mechanics is yet another model, and as such it, too, is flawed, no doubt a caricature of a more complex underlying reality. The reason physics has drifted into theoretical speculation about n-dimensional grand unified models over the past few decades (the "beautiful story" phase of a discipline starved of data) is that we don't know how to run the experiments that would falsify the hypotheses — the energies are too high, the accelerators too expensive, and so on."

The EU tradition of simply looking at the data and chasing it with an open mind wherever it leads suggests that Big Data could be a great magnifier of the EU vision.

User avatar
junglelord
Posts: 3693
Joined: Mon Mar 17, 2008 5:39 am
Location: Canada

Re: Wired magazine's focus on Big Data

Unread post by junglelord » Tue Jun 24, 2008 8:38 am

As I see the universe, it represents the fundamental level most profoundly, at the quantum level and the galactic level.

The models of various modern physics to explain these different systems is due to the way they operate, in different modes, which is not so illogical as it might first appear. The ability to function at different levels even based on temperature, ie a superconductor, is quite important in the scheme of things. This state is the most like the continuous dipole aether dimension.

It is quantum coherent, charged, entangled, seperates magnetic flux, acts like a single electron, has millions of vorticies, creates branching networks, supercurrent, reverse time scalar functions.That is the aether's echo, and also how one should consider the EU.

Consider the story of bringing a generator online, like explained to me by Dave Smith and echoed by Mead. Then consider this same "stuff" can act like one huge electron in a quantum system....they are both the same thing, acting very different. I sumise the galactic system is not a transverse uncoherent charged system (three phase AC generator) but is a longitudinal coherent charged system (quantum coherent).
What about the power plant?

Oh, there were things in the power plant that were just awesome. In the generator there's this big wheel going around with these coils of wire, and this cascading water coming down two thousand feet through these great pipes and rushing through turbines. On the other side, there are these one-inch diameter cables, going down to Los Angeles. As a kid, I would watch them bring a new unit on line. The generator has huge inertia, but almost no friction, so you have to be really careful. You let a little water through and the rotation accelerates. Its speed comes up and up, governed by this instrument called a syncroscope that looks at the relative phase [timing of the troughs and crests of the wave of electricity] on the grid, and the voltage from the generator. Nobody ever gets those phases exactly right, but if you miss by much, the whole power plant goes boom--the difference in phase is enough to shear off the huge bolts, six inches in diameter, that bind the generator to the floor of the power plant. So electricity may be invisible, but it is powerful stuff; it's not invisible really. It's just invisible in the way we normally look at things.

So early on you knew that electrons were real.

The electrons were real, the voltages were real, the phase of the sine-wave was real, the current was real. These were real things. They were just as real as the water going down through the pipes. You listen to the technology, and you know that these things are totally real, and totally intuitive.

But they're also waves, right? Then what are they waving in?

It's interesting, isn't it? That has hung people up ever since the time of Clerk Maxwell, and it's the missing piece of intuition that we need to develop in young people. The electron isn't the disturbance of something else. It is its own thing. The electron is the thing that's wiggling, and the wave is the electron. It is its own medium. You don't need something for it to be in, because if you did it would be buffeted about and all messed up. So the only pure way to have a wave is for it to be its own medium. The electron isn't something that has a fixed physical shape. Waves propagate outwards, and they can be large or small. That's what waves do.

So how big is an electron?

It expands to fit the container it's in. That may be a positive charge that's attracting it--a hydrogen atom--or the walls of a conductor. A piece of wire is a container for electrons. They simply fill out the piece of wire. That's what all waves do. If you try to gather them into a smaller space, the energy level goes up. That's what these Copenhagen guys call the Heisenberg uncertainty principle. But there's nothing uncertain about it. It's just a property of waves. Confine them, and you have more wavelengths in a given space, and that means a higher frequency and higher energy. But a quantum wave also tends to go to the state of lowest energy, so it will expand as long as you let it. You can make an electron that's ten feet across, there's no problem with that. It's its own medium, right? And it gets to be less and less dense as you let it expand. People regularly do experiments with neutrons that are a foot across.

A ten-foot electron! Amazing

It could be a mile. The electrons in my superconducting magnet are that long.

A mile-long electron! That alters our picture of the world--most people's minds think about atoms as tiny solar systems.

Right, that's what I was brought up on-this little grain of something. Now it's true that if you take a proton and you put it together with an electron, you get something that we call a hydrogen atom. But what that is, in fact, is a self-consistent solution of the two waves interacting with each other. They want to be close together because one's positive and the other is negative, and when they get closer that makes the energy lower. But if they get too close they wiggle too much and that makes the energy higher. So there's a place where they are just right, and that's what determines the size of the hydrogen atom. And that optimum is a self-consistent solution of the Schrodinger equation.

So much for the idea of the quantum world as microscopic...

As I describe them, coherent and incoherent systems are dominated by different sets of physical laws. With the incoherent systems that we see all around us, time is one-directional. And things that come apart don't spontaneously come together again. And the inertia--of the billiard ball, for example--increases linearly with the number of atoms. With coherent systems, on the other hand, time is two-directional, and inertia increases with the square of the number of elements. In a superconducting magnet, the electron inertia increases with the square of the number of electrons. That's foreign to Newtonian thinking, which is why Feynman had trouble with it. A coherent system is not more real, but it is much more pure and fundamental. "Coherence" seems comparable to electricity--it has existed forever.
http://freespace.virgin.net/ch.thompson ... erMead.htm
Combine that quote with the review of his book Collective Electrodynamics and you start to get the galactic circuit, the seperation of various modes of electricity and physics, essentials to understand the galactic circuit and what mode we are to study it in.
He points out that physics can be split into several areas: Classical Mechanics explains un-coherent, uncharged systems such as cannon balls, planets, vehicles, etc.

Classical Electrodynamics explains un-coherent, charged systems such as conductors, currents, and their fields.

Thermodynamics explains how macroscopic statistics, such as temperature and entropy, guide the time evolution of systems.

Modern Quantum Mechanics tries to explain coherent, charged systems.

Here 'coherent' refers to quantum coherency, where many particles/atoms march to the same drum such as the photons in a laser, or the electrons in a superconductor, or any isolated one or two particles. Another description of coherency is that the states are quantum entangled; their time-evolution depends upon each other.

The thrust of Carver's book: QM applies to all matter--not just small systems or isolated particles--is well made. He brings up experimental data from superconductors to illustrate that the phenomenon of coherent quantum entanglement can, and does, occur at macroscopic scales; and that such behavior is very quantum. Thus he proves, quite convincingly, that quantum mechanics applies to all coherent systems.

He then closes by making some very important points. (1) He shows that quantum behavior of such systems can be expressed in quantum language (wave function), relativistic language (four-vectors), or electrodynamics (vector potential, scalar potential) in an equivalent fashion. This is important, as it proves that a superconductor is macroscopic, exhibits quantum behavior, and that these quantitative results agree with those found from the other approaches. (2) He makes the point that the quantum and relativistic equations show that electromagnetic phenomena consist of two parts: one traveling forward in time; the other backward in time. Feynmann and others have said this for a long time, and he shows how thermodynamics (or un-coherent behavior) forces what we see as only time-evolution in one direction in un-coherent systems. (3) He illustrates, modeling single atoms as tiny superconducting resonators, that two atoms that are coherently linked will start exchanging energy. This causes an exponential, positive-feedback loop that ends with each atom in a quantum eigenstate. Thus quantum collapse is neither discontinuous, nor instantaneous; and in fact makes a lot of sense. (4) He explains, using four-vectors, that all points on a light-cone are near each other in four space. This point--together with (2)--shows that there's no causality contradiction between relativity and quantum mechanics.

For example, he explains that two entangled particles, such as photons light years apart, can affect each other immediately if one falls into an eigenstate, since the four-dimensional distance between them (R1 dot R2) is zero. Although separated in three space, they're neighbors in four space. Through these demonstrations and proofs, he successfully suggests that there is a way to further develop the 'behavior of charged, coherent systems' such that quantum mechanics and relativity will agree--but the conceptual changes he suggests are necessary and must be further developed. Also, he admits that a better, more appropriate mathematical and computational methods will be needed, since the complexity of coherent systems runs as n^2.

Pleasantly, then, the book makes elegant, defensible, mathematical and conceptual steps to resolve some nagging points of understanding. Also, the narrative gives the best introduction to electrodynamics and quantum mechanics that I've ever seen. Since the theoretical criticisms and experimental data are quite valid, his proposed resolutions are eye-opening and valuable. The methods he suggests greatly simply thinking about complicated quantum/classical problems.


If you only knew the magnificence of the 3, 6 and 9, then you would have a key to the universe.
— Nikola Tesla
Casting Out the Nines from PHI into Indigs reveals the Cosmic Harmonic Code.
— Junglelord.
Knowledge is Structured in Consciouness. Structure and Function Cannot Be Seperated.
— Junglelord

Locked

Who is online

Users browsing this forum: No registered users and 10 guests