NASA Space Assets Detect Ocean inside Saturn Moon
"The way we deduce gravity variations is a concept in physics called the Doppler Effect, the same principle used with a speed-measuring radar gun," said Sami Asmar of NASA's Jet Propulsion Laboratory in Pasadena, Calif., a coauthor of the paper. "As the spacecraft flies by Enceladus, its velocity is perturbed by an amount that depends on variations in the gravity field that we're trying to measure. We see the change in velocity as a change in radio frequency, received at our ground stations here all the way across the solar system."
The gravity measurements suggest a large, possibly regional, ocean about 6 miles (10 kilometers) deep, beneath an ice shell about 19 to 25 miles (30 to 40 kilometers) thick. The subsurface ocean evidence supports the inclusion of Enceladus among the most likely places in our solar system to host microbial life. Before Cassini reached Saturn in July 2004, no version of that short list included this icy moon, barely 300 miles (500 kilometers) in diameter.
The south pole area has a surface depression that causes a dip in the local tug of gravity. However, the magnitude of the dip is less than expected given the size of the depression, leading researchers to conclude the depression's effect is partially offset by a high-density feature in the region, beneath the surface.
"The Cassini gravity measurements show a negative gravity anomaly at the south pole that however is not as large as expected from the deep depression detected by the onboard camera," said the paper's lead author, Luciano Iess of Sapienza University of Rome. "Hence the conclusion that there must be a denser material at depth that compensates the missing mass: very likely liquid water, which is seven percent denser than ice. The magnitude of the anomaly gave us the size of the water reservoir."
There is no certainty the subsurface ocean supplies the water plume spraying out of surface fractures near the south pole of Enceladus, however, scientists reason it is a real possibility. The fractures may lead down to a part of the moon that is tidally heated by the moon's repeated flexing, as it follows an eccentric orbit around Saturn.
NASA Space Asse(t)s Detect Ocean inside Saturn Moon
"We've been able to show that each unique tendril structure can be reproduced by particular sets of geysers on the moon's surface," said Colin Mitchell, a Cassini imaging team associate at the Space Science Institute in Boulder, Colorado, and lead author of the paper. Mitchell and colleagues used computer simulations to follow the trajectories of
ice grains ejected from individual geysers. The geysers, which were discovered by Cassini in 2005, are jets of tiny water ice particles, water vapor and simple organic compounds.
New work from a team including Carnegie’s Christopher Glein has revealed the pH of water spewing from a geyser-like plume on Saturn’s moon Enceladus. Their findings are an important step toward determining whether life could exist, or could have previously existed, on the sixth planet’s sixth-largest moon.
[...]
[...]
The present team, including lead author Glein, John Baross of the University of Washington, and J. Hunter Waite Jr. of the Southwest Research Institute, developed a new chemical model based on mass spectrometry data of ice grains and gases in Enceladus’ plume gathered by Cassini, in order to determine the pH of Enceladus’ ocean. The pH tells us how acidic or basic the water is. It is a fundamental parameter to understanding geochemical processes occurring inside the moon that are considered important in determining Enceladus’ potential for acquiring and hosting life.[...]
The team’s model, constrained by observational data from two Cassini teams, including one led by coauthor Waite, shows that the plume, and by inference the ocean, is salty with an alkaline pH of about 11 or 12, which is similar to that of glass-cleaning solutions of ammonia. It contains the same sodium chloride (NaCl) salt as our oceans here on Earth. Its additional substantial sodium carbonate (Na2CO3) makes the ocean more similar to our planet’s soda lakes such as Mono Lake in California or Lake Magadi in Kenya. The scientists refer to it as a “soda ocean.”
The model suggests that the ocean’s high pH is caused by a metamorphic, underwater geochemical process called serpentinization. On Earth, serpentinization occurs when certain kinds of so-called “ultrabasic” or “ultramafic” rocks (low in silica and high in magnesium and iron) are brought up to the ocean floor from the upper mantle and chemically interact with the surrounding water molecules. Through this process, the ultrabasic rocks are converted into new minerals, including the mineral serpentine, after which the process is named, and the fluid becomes alkaline. On Enceladus, serpentinization would occur when ocean water circulates through a rocky core at the bottom of its ocean.
“Why is serpentinization of such great interest? Because the reaction between the metallic rocks and the ocean water also produces molecular hydrogen (H2), which provides a source of chemical energy that is essential for supporting a deep biosphere in the absence of sunlight inside moons and planets,” Glein said. “This process is central to the emerging science of astrobiology, because molecular hydrogen can both drive the formation of organic compounds like amino acids that may lead to the origin of life, and serve as food for microbial life such as methane-producing organisms. As such, serpentinization provides a link between geological processes and biological processes. The discovery of serpentinization makes Enceladus an even more promising candidate for a separate genesis of life.”
“Our results show that this kind of synergy between observations and modeling can tell us a great deal about the geochemical processes occurring on a faraway celestial object, thus opening the door to an exciting new era of chemical oceanography in the solar system and beyond.” Glein added.
New research using data from NASA's Cassini mission suggests most of the eruptions from Saturn's moon Enceladus might be diffuse curtains rather than discrete jets. Many features that appear to be individual jets of material erupting along the length of prominent fractures in the moon's south polar region might be phantoms created by an optical illusion, according to the new study.
"We think most of the observed activity represents curtain eruptions from the 'tiger stripe' fractures, rather than intermittent geysers along them," said Joseph Spitale, lead author of the study and a participating scientist on the Cassini mission at the Planetary Science Institute in Tucson, Arizona. "Some prominent jets likely are what they appear to be, but most of the activity seen in the images can be explained without discrete jets."
The researchers modeled eruptions on Enceladus as uniform curtains along the tiger stripe fractures. They found that phantom brightness enhancements appear in places where the viewer is looking through a "fold" in the curtain. The folds exist because the fractures in Enceladus' surface are more wavy than perfectly straight. The researchers think this optical illusion is responsible for most of what appear to be individual jets.
"The viewing direction plays an important role in where the phantom jets appear," said Spitale. "If you rotated your perspective around Enceladus' south pole, such jets would seem to appear and disappear."
Phantom jets in simulated images produced by the scientists line up nicely with some of the features in real Cassini images that appear to be discrete columns of spray. The correspondence between simulation and spacecraft data suggests that much of the discrete-jet structure is an illusion, according to the researchers
Curtain eruptions occur on Earth where molten rock, or magma, gushes out of a deep fracture. These eruptions, which often create spectacular curtains of fire, are seen in places such as Hawaii, Iceland and the Galapagos Islands.
"Our understanding of Enceladus continues to evolve, and we've come to expect surprises along the way," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory, Pasadena, California, who was not involved in the study. "This little ice world is becoming more exciting, not less, as we tease out new details about its subsurface ocean and astonishing geophysical activity."
meemoe_uk wrote:
These are un-enhanced images of Saturn as it passes near zero phase angle and exhibited 'opposition surge' ( photon-stimulated emission ).
Conventional astronomers thought it very remarkable.
The whole of the Saturnian system is highly ionized so all it's bodies have high opposition surge.
ThunderIdeal wrote:i don't understand what i'm looking at in these two
http://saturn.jpl.nasa.gov/photos/raw/r ... eID=342934
http://saturn.jpl.nasa.gov/photos/raw/r ... eID=342933
HEATING OCEAN MOON ENCELADUS FOR BILLIONS OF YEARS
Nature Astronomy
06 November 2017
These observations require a huge source of heat, about 100 times more than is expected to be generated by the natural decay of radioactive elements in rocks in its core, as well as a means of focusing activity at the south pole.
The tidal effect from Saturn is thought to be at the origin of the eruptions deforming the icy shell by push-pull motions as the moon follows an elliptical path around the giant planet. But the energy produced by tidal friction in the ice, by itself, would be too weak to counterbalance the heat loss seen from the ocean – the globe would freeze within 30 million years.
In the new simulations the core is made of unconsolidated, easily deformable, porous rock that water can easily permeate. As such, cool liquid water from the ocean can seep into the core and gradually heat up through tidal friction between sliding rock fragments, as it gets deeper.
[image]
Enceladus interior. Credits: Surface: NASA/JPL-Caltech/Space Science Institute; interior: LPG-CNRS/U. Nantes/U. Angers. Graphic composition: ESA
Water circulates in the core and then rises because it is hotter than the surroundings. This process ultimately transfers heat to the base of the ocean in narrow plumes where it interacts strongly with the rocks. At the seafloor, these plumes vent into the cooler ocean.
One seafloor hotspot alone is predicted to release as much as 5 GW of energy, roughly corresponding to the annual geothermal power consumed in Iceland.
We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years.
Return to Electric Universe - Planetary Science
Users browsing this forum: No registered users and 1 guest